
8/19/2019

1

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

C H A P T E R 2

Java

Fundamentals

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics
– The Parts of a Java

Program

– The System.out.print

and
System.out.println

Methods, and the Java API

– Variables and Literals

– Primitive Data Types

– Arithmetic Operators

– Combined Assignment

Operators

– Conversion between

Primitive Data Types

– Creating named constants
with final

– The String class

– Scope

– Comments

– Programming style

– Reading keyboard input

– Dialog boxes

– The System.out.printf

method

2

8/19/2019

2

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

3

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)
• To compile the example:

javac Simple.java

• Notice the .java file extension is needed.

• This will result in a file named Simple.class being created.

• To run the example:

java Simple

• Notice there is no file extension here.

• The java command assumes the extension is .class.

4

8/19/2019

3

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)

• The // in line 1 marks the beginning of a comment.

• The compiler ignores everything from the double slash to the end of

the line.

• Comments are not required, but comments are very important

because they help explain what is going on in the program.

Comment

5

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)

• Line 2 is blank.

• Blank lines are often inserted by the programmer because they can

make the program easier to read.

Blank Line

6

8/19/2019

4

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)

• Line 3 is known as a class header, and it marks the beginning of a

class definition.

• This line of code tells the compiler that a publicly accessible class
named Simple is being defined.

• A Java program must have at least one class definition.

Class Header

7

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)

• Line 4 contains an opening brace, and it is associated with the

beginning of the class definition.

• The last line in the program, line 9, contains the closing brace.

• Everything between the two braces is the body of the class named
Simple.

Opening Brace

Closing Brace

Class Body

8

8/19/2019

5

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)

• Line 5 is known as a method header, and it marks the beginning of a

method.

• The name of the method is main, and the rest of the words are

required for the method to be properly defined.

• Every Java application must have a method named main.

• The main method is the starting point of the application.

Method Header

9

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)

• Line 6 contains an opening brace that belongs to the main method,

and line 8 contains the closing brace.

• Everything between the two braces is the body of the main method.

• Make sure to have a closing brace for every opening brace in your

program.

Opening Brace

Closing Brace

Method Body

10

8/19/2019

6

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)

• Line 7 contains a statement that displays a message on the screen.

• The group of characters inside the quotation marks is called a

string literal.

• At the end of the line is a semicolon; it marks the end of a

statement in Java.

• Not every line of code ends with a semicolon, however.

Statement

11

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)
• Java is a case-sensitive language.

• All Java programs must be stored in a file with a .java file

extension.

• Comments are ignored by the compiler.

• A .java file may contain many classes but may only have one

public class.

• If a .java file has a public class, the class must have the same

name as the file.

• Java applications must have a main method.

• For every left brace, or opening brace, there must be a

corresponding right brace, or closing brace.

• Statements are terminated with semicolons, but comments, class

headers, method headers, and braces are not.

12

8/19/2019

7

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Parts of a Java Program

(cont’d.)

13

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and

the Java API
• Many of the programs that you will write will run in a console

window.

14

8/19/2019

8

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)

• The console window that starts a Java

application is typically known as the

standard output device.

• The standard input device is typically

the keyboard.

• Java sends information to the standard

output device by using a Java class

stored in the standard Java library.

15

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)

• Java classes in the standard Java

library are accessed using the Java

Applications Programming Interface

(API).

• The standard Java library is commonly

referred to as the Java API.

16

8/19/2019

9

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)
• The previous example uses the line:

System.out.println("Programming is great fun!");

• This line uses the System class from the

standard Java library.

• The System class contains methods and

objects that perform system level tasks.

• The out object, a member of the System class,

contains the methods print and println.

17

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)

18

8/19/2019

10

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)
• The print and println methods actually

perform the task of sending characters to the

output device.

• The line:
System.out.println("Programming is great fun!");

is pronounced: “system dot out dot print line”

• The value inside the parenthesis, called an

argument, will be sent to the output device

(in this case, a string).

19

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)
• The println method places a newline

character at the end of whatever is being

printed out.

• The following lines:

System.out.println("This is being printed out");

System.out.println("on two separate lines.");

Would be printed out on separate lines since the first

statement sends a newline command to the screen.

20

8/19/2019

11

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)
• The print statement works very similarly to the

println statement.

• However, the print statement does not put a

newline character at the end of the output.

• The lines:
System.out.print("These lines will be");

System.out.print("printed on");

System.out.println("the same line.");

• Produce the following output:

These lines will beprinted onthe same line.

• Notice the odd spacing?

• Why do some words run together?

21

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)
• For all of the previous examples, we have been

printing out strings of characters.

• Later, we will see that much more can be printed.

• There are some special characters that can be put

into the output.

System.out.print("This will have a newline.\n");

• The \n in the string is an escape sequence that

represents the newline character.

• Escape sequences allow the programmer to print

characters that otherwise would be unprintable.

22

8/19/2019

12

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)

23

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.print and

System.out.println Methods, and the

Java API (cont’d.)
• Even though the escape sequences are comprised of two

characters, they are treated by the compiler as a single
character.

System.out.print("These are our top sellers:\n");

System.out.print("\tComputer games\n\tCoffee\n ");

System.out.println("\tAspirin");

• Would result in the following output:
These are our top sellers:

Computer games

Coffee

Asprin

• With escape sequences, complex text output can be
achieved.

24

Tabs.java, TabsIssue.java

8/19/2019

13

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variables and Literals

• A variable is a named storage location

in the computer’s memory.

• A literal is a value that is written into

the code of a program.

• Programmers determine the number

and type of variables a program will

need.

25

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variables and Literals (cont’d.)

•

Line 7 contains a variable declaration.

• Variables must be declared before they are used.

• A variable declaration tells the compiler the variable’s name and the

type of data it will hold.

• This variable’s name is value, and the word int means that it will

hold an integer value.

Notice that variable declarations end with a semicolon.

Variable Declaration

26

Literals.java,

Variable.java,

VariableBadExample.java

8/19/2019

14

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variables and Literals (cont’d.)

• Line 9 contains an assignment statement.

• The equal sign is an operator that stores the value on its right (in this

case 5) into the variable named on its left.

• After this line executes, the value variable will contain the value 5.

Line 9 doesn’t print anything. It runs silently behind the scenes.

Assignment Statement

27

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variables and Literals (cont’d.)

• Line 10 sends the string literal "The value is " to the print

method.

• Line 11 send the name of the value variable to the println method.

• When you send a variable name to print or println, the variable’s

contents are displayed.

Notice there are no quotation marks around the variable value.

Display String Literal
Display Variable’s Contents

28

8/19/2019

15

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variables and Literals

(cont’d.)

29

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Displaying Multiple Items with

the + Operator
• The + operator can be used in two

ways.

• as a concatenation operator

• as an addition operator

• If either side of the + operator is a
string, the result will be a string.

System.out.println("Hello " + "World");

System.out.println("The value is: " + 5);

System.out.println("The value is: " + value);

System.out.println("The value is: " + '/n' + 5);

30

Variable2.java

8/19/2019

16

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

String Concatenation

• Java commands that have string

literals must be treated with care.

• A string literal value cannot span lines

in a Java source code file.

System.out.println("This line is too long and now it

has spanned more than one line, which will cause a

syntax error to be generated by the compiler. ");

31

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

String Concatenation (cont’d.)

• The String concatenation operator can

be used to fix this problem.
System.out.println("These lines are " +

"now ok and will not " +

"cause the error as before.");

• String concatenation can join various

data types.
System.out.println("We can join a string to " +

"a number like this: " + 5);

32

8/19/2019

17

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

String Concatenation (cont’d.)

• The Concatenation operator can be used to

format complex String objects.

System.out.println("The following will be printed " +

"in a tabbed format: " +

"\n\tFirst = " + 5 * 6 + ", " +

"\n\tSecond = " + (6 + 4) + "," +

"\n\tThird = " + 16.7 + ".");

• Notice that if an addition operation is also

needed, it must be put in parenthesis.

33

StringCat.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Identifiers

• Identifiers are programmer-defined

names for:

• classes

• variables

• methods

• Identifiers may not be any of the Java

reserved key words.

34

8/19/2019

18

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Identifiers (cont’d.)

• Identifiers must follow certain rules:

• An identifier may only contain:
• letters a–z or A–Z,

• the digits 0–9,

• underscores (_), or

• the dollar sign ($)

• The first character may not be a digit.

• Identifiers are case sensitive.
•itemsOrdered is not the same as
itemsordered.

• Identifiers cannot include spaces.
35

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable and Class Names

• Variable names should begin with a lower

case letter and then capitalize the first letter

of each word thereafter:
Ex: int caTaxRate

• Class names should begin with a capital

letter and each word thereafter should be

capitalized.
Ex: public class BigLittle

• This helps differentiate the names of

variables from the names of classes.

36

8/19/2019

19

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Primitive Data Types

• Primitive data types are built into the Java
language and are not derived from classes.

• There are 8 Java primitive data types.

• byte

• short

• int

• long

• float

• double

• boolean

• char

37

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Numeric Data Types

38

8/19/2019

20

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Declarations

• Variable Declarations take the following

form:

• DataType VariableName;

byte inches;

short month;

int speed;

long timeStamp;

float salesCommission;

double distance;

39

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Integer Data Types

• byte, short, int, and long are all
integer data types.

• They can hold whole numbers such as
5, 10, 23, 89, etc.

• Integer data types cannot hold
numbers that have a decimal point in
them.

• Integers embedded into Java source
code are called integer literals.

40

IntegerVariables.java

8/19/2019

21

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Floating-Point Data Types

• Data types that allow fractional values

are called floating-point numbers.

• 1.7 and -45.316 are floating-point numbers.

• In Java there are two data types that

can represent floating-point numbers.

• float- also called single precision

• (7 decimal points)

• double - also called double precision

• (15 decimal points)

41

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Floating-Point Literals

• When floating-point numbers are

embedded into Java source code they

are called floating-point literals.

• The default data type for floating-point
literals is double.

• 29.75, 1.76, and 31.51 are double data

types.

• Java is a strongly-typed language

42

8/19/2019

22

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Floating-Point Literals

(cont’d.)
• Literals cannot contain embedded currency

symbols or commas.
grossPay = $1,257.00; // ERROR!

grossPay = 1257.00; // Correct.

• Floating-point literals can be represented in
scientific notation.
• 47,281.97 == 4.728197 x 104.

• Java uses E notation to represent values in
scientific notation.
• 4.728197X104 == 4.728197E4.

43

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Scientific and E Notation

44

SunFacts.java

8/19/2019

23

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The boolean Data Type

• The Java boolean data type can have

two possible values.

• true

• false

• The value of a boolean variable may

only be copied into a boolean variable.

45

TrueFalse.java, TrueFalseRevisited.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The char Data Type

• The Java char data type provides access to

single characters.

• char literals are enclosed in single quote

marks.

• 'a', 'Z', '\n', '1'

• Don’t confuse char literals with string

literals.

• char literals are enclosed in single quotes.

• String literals are enclosed in double quotes.

46

Letters.java

8/19/2019

24

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Unicode

• Internally, characters are stored as numbers.

• Character data in Java is stored as Unicode

characters.

• The Unicode character set can consist of 65536 (216)

individual characters.

• This means that each character takes up 2 bytes in

memory.

• The first 256 characters in the Unicode character set

are compatible with the ASCII* character set.

*American Standard Code for Information Interchange

47

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Unicode (cont’d.)

48

Letters2.java

8/19/2019

25

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Assignment and

Initialization
• In order to store a value in a variable, an assignment

statement must be used.

• The assignment operator is the equal (=) sign.

• The operand on the left side of the assignment

operator must be a variable name.

• The operand on the right side must be either a literal

or expression that evaluates to a type that is

compatible with the type of the variable.

49

UnInitialized.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
50

Initialize.java,

Initialize2.java,

InitializeRevisited.java

8/19/2019

26

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Assignment and

Initialization (cont’d.)
• Variables can only hold one value at a

time.

• Local variables do not receive a default

value.

• Local variables must have a valid type

in order to be used.

51

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arithmetic Operators

52

Contribution.java, Discount.java, Sale.java, Wages.java

8/19/2019

27

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arithmetic Operators (cont’d.)

• The operators are called binary operators

because they must have two operands.

• Each operator must have a left and right

operand.

• The arithmetic operators work as one would

expect.

• It is an error to try to divide any number by

zero.

• When working with two integer operands, the

division operator requires special attention.
53

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Integer Division

• Division can be tricky.

In a Java program, what is the value of 1/2?

• You might think the answer is 0.5…

• But, that’s wrong.

• The answer is simply 0.

• Integer division will truncate any

decimal remainder.

54

BooksPerMonthBad.java, BooksPerMonthFixed.java, IntDivisionCast.java,

IntDivisionIssue.java

8/19/2019

28

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Operator Precedence

• Mathematical expressions can be very complex.

• There is a set order in which arithmetic operations

will be carried out.

Higher

Priority

Lower

Priority

Operator Associativity Example Result

-

(unary negation)
right to left x = -4 + 3; -1

* / % left to right x = -4 + 4 % 3 * 13 + 2; 11

+ - left to right x = 6 + 3 – 4 + 6 * 3; 23

55

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Grouping with Parenthesis

• When parenthesis are used in an expression, the
inner most parenthesis are processed first.

• If two sets of parenthesis are at the same level, they
are processed left to right.

x = ((4*5) / (5-2)) – 25; // result = -19

1

3

4

2

56

IntegerVariablesRevisited.java, SplitCheck.java, SplitCheckBad.java

8/19/2019

29

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Math Class

• The Java API provides a class named Math, which

contains several methods that are useful for

performing complex mathematical operations.

• In Java, raising a number to a power requires the
Math.pow method

double result = math.pow(4.0, 2.0);

• The Math.sqrt method accepts a double value as

its argument and returns the square root of the value

double result = math.sqrt(9.0);

57

DemoNoFinal.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Combined Assignment

Operators
• Java has some combined assignment

operators.

• These operators allow the programmer

to perform an arithmetic operation and

assignment with a single operator.

• Although not required, these operators

are popular since they shorten simple

equations.

58

8/19/2019

30

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Combined Assignment

Operators (cont’d.)

59

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types
• Java is a strongly typed language.

• Before a value is assigned to a variable, Java

checks the data types of the variable and the

value being assigned to it to determine if they

are compatible.

• When you try to assign an incompatible value

to a variable, an error occurs at compile-time.

60

8/19/2019

31

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)
• For example, look at the following

statements:

int x;

double y = 2.5;

x = y;

This statement will cause a

compiler error because it is
trying to assign a double

value (2.5) in an int variable.

61

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)
• The Java primitive data types are

ranked, as shown here:

62

8/19/2019

32

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)
• Widening conversions are allowed.

• This is when a value of a lower-ranked data

type is assigned to a variable of a higher-

ranked data type.

• Example:

double x;

int y = 10;

x = y; Widening Conversion

63

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)
• Narrowing conversions are not allowed.

• This is when a value of a higher-ranked data

type is assigned to a variable of a lower-

ranked data type.

• Example:

Narrowing Conversion

int x;

double y = 2.5;

x = y;

64

8/19/2019

33

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)
• Cast Operators

• Let you manually convert a value, even if it

means that a narrowing conversion will take

place.

• Example:
int x;

double y = 2.5;

x = (int)y;

Cast Operator

65

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)

66

8/19/2019

34

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)
• Mixed Integer Operations

• When values of the byte or short data

types are used in arithmetic expressions, they
are temporarily converted to int values.

• The result of an arithmetic operation using
only a mixture of byte, short, or int values

will always be an int.

67

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)
• Mixed Integer Operations

• For example:

short a;

short b = 3;

short c = 7;

a = b + c;

a = (short)(b + c);

This statement will cause an error
because the result of b + c is an

int. It cannot be assigned to a

short variable.

To fix the statement, rewrite the

expression using a cast operator.
68

8/19/2019

35

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Conversion between Primitive

Data Types (cont’d.)
• Other Mixed Mathematical Expressions

• If one of an operator’s operands is a double, the value of the

other operand will be converted to a double.

• The result of the expression will be a double.

• If one of an operator’s operands is a float, the value of the

other operand will be converted to a float.

• The result of the expression will be a float.

• If one of an operator’s operands is a long, the value of the other

operand will be converted to a long.

• The result of the expression will be a long.

69

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating Named Constants
with final

• Many programs have data that does not need to be
changed.

• Littering programs with literal values can make the
program hard do read and maintain.

• Replacing literal values with constants remedies this
problem.

• Constants allow the programmer to use a name
rather than a value throughout the program.

• Constants also give a singular point for changing
those values when needed.

70

8/19/2019

36

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating Named Constants
with final (cont’d.)

• Constants keep the program organized and

easier to maintain.

• Constants are identifiers that can hold only a

single value.

• Constants are declared using the keyword
final.

• Constants need not be initialized when

declared; however, they must be initialized

before they are used or a compiler error will

be generated.

71

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating Named Constants
with final (cont’d.)

• Once initialized with a value, constants

cannot be changed programmatically.

• By convention, constants are all upper

case and words are separated by the

underscore character.

• For example:

final double CAL_SALES_TAX = 0.0725;

72

DemoFinal.java

8/19/2019

37

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The String Class

• Java has no primitive data type that holds a
series of characters.

• The String class from the Java standard
library is used for this purpose.

• In order to be useful, the a variable must be
created to reference a String object.

String number;

• Notice the S in String is upper case.

• By convention, class names should always
begin with an upper case character.

73

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Primitive-Type Variables and

Class-Type Variables
• Primitive variables actually contain the value that

they have been assigned.

number = 25;

• The value 25 will be stored in the memory location
associated with the variable number.

• Objects are not stored in variables, however. Objects
are referenced by variables.

74

8/19/2019

38

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Primitive-Type Variables and

Class-Type Variables (cont’d.)
• When a variable references an object, it

contains the memory address of the object’s

location.

• Then it is said that the variable references

the object.

String name = "Joe Mahoney";

75

StringDemo.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating a String Object

• A variable can be assigned a string literal.

String value = "Hello";

• String objects are the only objects that can

be created in this way.

• A variable can be created using the new

keyword.

String value = new String("Hello");

• This is the method that all other objects must

use when they are created.

76

8/19/2019

39

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating a String Object

(cont’d.)
• Since String is a class, objects that

are instances of it have methods.

• One of those methods is the length

method.

stringSize = value.length();

• This statement calls the length

method on the object pointed to by the
value variable

77

StringLength.java, StringMethods.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating a String Object

(cont’d.)
• The String class contains many

methods that help with the
manipulation of String objects.

• String objects are immutable,

meaning that they cannot be changed.

• Many of the methods of a String

object can create new versions of the

object.

78

8/19/2019

40

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Scope

• Scope refers to the part of a program
that has access to a variable’s
contents.

• Variables declared inside a method
(like the main method) are called local
variables.

• The scope of a local variable begins at
the declaration of the variable and ends
at the end of the method in which it was
declared.

79

Scope.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Comments

• Comments are:

• notes of explanation that document lines or sections

of a program.

• part of the program, but the compiler ignores them.

• intended for people who may be reading the source

code.

• In Java, there are three types of comments:

• Single-line comments

• Multiline comments

• Documentation comments

80

8/19/2019

41

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Single-Line Comments

• Place two forward slashes (//) where you want the comment to

begin.

• The compiler ignores everything from that point to the end of the

line.
81

Comment3.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Multiline Comments

• Start with /* (a forward slash followed by an asterisk) and end

with */ (an asterisk followed by a forward slash).

• Everything between these markers is ignored.

• Can span multiple lines 82

8/19/2019

42

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Block Comments

• Many programmers use asterisks or other characters to

draw borders or boxes around their comments.

• This helps to visually separate the comments from

surrounding code.

83

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Documentation Comments

• Any comment that starts with /** and ends with */ is

considered a documentation comment.

• You write a documentation comment just before:

• a class header, giving a brief description of the class.

• each method header, giving a brief description of the

method.

• Documentation comments can be read and processed

by a program named javadoc, which comes with the Sun

JDK.

84

8/19/2019

43

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Documentation Comments

(cont’d.)

85

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Documentation Comments

(cont’d.)

• The purpose of the javadoc program is to read Java
source code files and generate attractively formatted
HTML files that document the source code.

• To create the documentation, run the javadoc program
with the source file as an argument.

• For example:

javadoc Comment3.java

• The javadoc program will create index.html and
several other documentation files in the same directory
as the input file

86

8/19/2019

44

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Documentation Comments

(cont’d.)

87

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programming Style

• Programming style refers to the way a programmer

visually arranges a program’s source code.

• When the compiler reads a program it:

• Processes it as one long stream of characters.

• Doesn’t care that each statement is on a separate

line, or that spaces separate operators from

operands.

• Humans, on the other hand, find it difficult to read

programs that aren’t written in a visually pleasing

manner.

88

8/19/2019

45

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programming Style (cont’d.)

89

Compact.java, Readable.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programming Style (cont’d.)

90

8/19/2019

46

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading Keyboard Input

• To read input from the keyboard we can
use the Scanner class.

• The Scanner class is defined in

java.util, so we will use the

following statement at the top of our

programs:

import java.util.Scanner;

91

Payroll.java, TripCalculator.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading Keyboard Input

(cont’d.)
• Scanner objects work with System.in

• To create a Scanner object and

connect it to the System.in object:

Scanner keyboard = new Scanner (System.in);

92

8/19/2019

47

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
93

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading Keyboard Input

(cont’d.)
• The Scanner class has methods for

reading:

• strings using the nextLine method

• bytes using the nextByte method

• integers using the nextInt method

• long integers using the nextLong method

• short integers using the nextShort method

• floats using the nextFloat method

• doubles using the nextDouble method

94

8/19/2019

48

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading a Character

• The Scanner class does not have a

method for reading a single character.

• Use the Scanner class’s

nextLine method to read a string

from the keyboard.

• Then use the String class’s

charAt method to extract the first

character of the string.
95

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading a Character (cont’d.)

96

8/19/2019

49

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Mixing Calls to nextLine with Calls to Other

Scanner Methods

• Keystrokes are stored in an area of memory that is

sometimes called the keyboard buffer.

• Pressing the Enter key causes a newline character to be

stored in the keyboard buffer.

• The Scanner methods that are designed to read

primitive values, such as nextInt and nextDouble,

will ignore the newline and return only the numeric value.

• The Scanner class’s nextLine method will read the

newline that is left over in the keyboard buffer, return it,

and terminate without reading the intended input.

97

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Mixing Calls to nextLine with Calls to Other

Scanner Methods (cont’d.)

• Remove the newline from the keyboard buffer by
calling the Scanner class’s nextLine method,

ignoring the return value.

Read Primitive

Remove Newline

Read String

98

8/19/2019

50

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Dialog Boxes

• A dialog box is a small graphical
window that displays a message to the
user or requests input.

• A variety of dialog boxes can be
displayed using the JOptionPane
class.

• Two of the dialog boxes are:

• Message Dialog - a dialog box that displays a
message.

• Input Dialog - a dialog box that prompts the
user for input. 99

PayrollDialog.java, TripCalculatorDialog.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Dialog Boxes (cont’d.)

• The JOptionPane class is not

automatically available to your Java

programs.

• The following statement must appear

before the program’s class header:
import javax.swing.JOptionPane;

• This statement tells the compiler where
to find the JOptionPane class.

100

8/19/2019

51

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Dialog Boxes (cont’d.)

The JOptionPane class provides methods to

display each type of dialog box.

101

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Displaying Message Dialogs

• JOptionPane.showMessageDialog method is used

to display a message dialog.

JOptionPane.showMessageDialog(null, "Hello World");

• Use null as the first argument.

• The second argument is the message that is to be displayed.

102

8/19/2019

52

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Displaying Input Dialogs

• An input dialog is a quick and simple

way to ask the user to enter data.

• The dialog displays a text field, an OK

button and a Cancel button.

• If OK is pressed, the dialog returns the

user’s input.

• If Cancel is pressed, the dialog returns
null.

103

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Displaying Input Dialogs

(cont’d.)
String name;

name = JOptionPane.showInputDialog("Enter your name.");

• The argument passed to the method is the message to display.

• If the user clicks on the OK button, name references the string
entered by the user.

• If the user clicks on the Cancel button, name references null.

104

8/19/2019

53

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Dialog Boxes (cont’d.)

• A program that uses JOptionPane does not

automatically stop executing when the end of
the main method is reached.

• Java generates a thread, which is a process

running in the computer, when a
JOptionPane is created.

• If the System.exit method is not called, this

thread continues to execute.

105

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Dialog Boxes (cont’d.)

• The System.exit method requires an
integer argument.
System.exit(0);

• This argument is an exit code that is passed
back to the operating system.

• This code is usually ignored, however, it can
be used outside the program:
• to indicate whether the program ended successfully

or as the result of a failure.

• The value 0 traditionally indicates that the program
ended successfully.

106

8/19/2019

54

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting a String to a

Number
• The JOptionPane’s

showInputDialog method always

returns the user's input as a String

• A String containing a number, such

as "127.89", can be converted to a

numeric data type.

107

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting a String to a

Number (cont’d.)
• Each of the numeric wrapper classes,

(covered in Chapter 8) has a method that

converts a string to a number.

• The Integer class has a method that converts a

string to an int.

• The Double class has a method that converts a

string to a double.

• etc.

• These methods are known as parse methods

because their names begin with the word

“parse.”
108

8/19/2019

55

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting a String to a

Number (cont’d.)

109

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting a String to a

Number (cont’d.)
• Example conversion from string to int:

• Example conversion from string to double:

110

8/19/2019

56

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The System.out.printf

Method
You can perform formatted console output with the
System.out.printf method.

The method’s general format is:

System.out.printf(FormatString, ArgumentList)

FormatString is a string that contains text and/or
special formatting specifiers

ArgumentList is a list of zero or more additional
arguments, formatted according to the format specifiers
listed in the FormatString.

2-111

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Simple Output

The simplest way you can use the printf

method is with only a format string and no

additional arguments.

System.out.printf("I love Java programming.\n");

This method call simply prints the string

I love Java programming.

Using the method without any format specifiers is
like using the System.out.print method.

112

8/19/2019

57

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Single Format Specifier and

Argument
Let’s look at an example that uses a format specifier and an
additional argument:

int hours = 40;

System.out.printf("I worked %d hours this week.\n",hours);

When this string is printed, the value of the hours
argument will be printed in place of the %d format specifier.

I worked 40 hours this week.

The %d format specifier was used because the hours
variable is an int.

An error will occur if you use %d with a non-integer value.

113

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Multiple Format Specifiers and

Arguments
Here’s another example:

int dogs = 2;

int cats = 4;

System.out.printf("We have %d dogs and %d cats.\n",dogs, cats);

First, notice that this example uses two %d format specifiers in

the format string.

Also notice that two arguments appear after the format string.

The value of the first integer argument, dogs, is printed in place

of the first %d.

The value of the second integer argument, cats, is printed in

place of the second %d.

We have 2 dogs and 4 cats.

114

CatsAndDogs.java

8/19/2019

58

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Multiple Format Specifiers and

Arguments
The following code shows another example:

int value1 = 3;

int value2 = 6;

int value3 = 9;

System.out.printf("%d %d %d\n", value1, value2, value3);

In the printf method call, there are three format
specifiers and three additional arguments after the format
string.

This code will produce the following output:

3 6 9

These examples show the one-to-one correspondence
between the format specifiers and the arguments that
appear after the format string.

115

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Setting the Field Width

A format specifier may also include a field width. Here is an

example:

int number = 9;

System.out.printf("The value is %6d\n", number);

The format specifier %6d indicates that the argument number

should be printed in a field that is 6 places wide. If the value in

number is shorter than 6 places, it will be right justified. Here is

the output of the code.

The value is 9

If the value of the argument is wider than the specified field width, the
field width will be expanded to accommodate the value.

123456

116

8/19/2019

59

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using Field Widths to Print

Columns
Field widths can help when you need to print values aligned in

columns. For example, look at the following code:

int num1 = 97654, num2 = 598;

int num3 = 86, num4 = 56012;

int num5 = 246, num6 = 2;

System.out.printf("%7d %7d\n", num1, num2);

System.out.printf("%7d %7d\n", num3, num4);

System.out.printf("%7d %7d\n", num5, num6);

This code displays the values of the variables in a table with three

rows and two columns. Each column has a width of seven spaces.

Here is the output for the code:

97654 598

86 56012

246 2

1234567 1234567 117

TabsIssueResolved.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Printing Formatted Floating-

Point Values
If you wish to print a floating-point value, use the %f format

specifier. Here is an example:

double number = 1278.92;

System.out.printf("The number is %f\n", number);

This code produces the following output:

The number is 1278.920000

You can also use a field width when printing floating-point

values. For example the following code prints the value of

number in a field that is 18 spaces wide:

System.out.printf("The number is %18f\n", number);

118

8/19/2019

60

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Printing Formatted Floating-Point Values

In addition to the field width, you can also specify

the number of digits that appear after the decimal

point. Here is an example:

double grossPay = 874.12;

System.out.printf("Your pay is %.2f\n", grossPay);

In this code, the %.2f specifier indicates that the

value should appear with two digits after the decimal

point. The output of the code is:

Your pay is 874.12

12

119

BooksPerMonthFixedRevisited.java,

DiscountRevisited.java,

PayrollFormatted.java,

SunFactsFormatted.java,

SunFactsRevisited.java,

WagesRevisited.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Printing Formatted Floating-

Point Values
When you specify the number of digits to appear

after the decimal point, the number will be rounded.

For example, look at the following code:

double number = 1278.92714;

System.out.printf("The number is %.2f\n", number);

This code will produce the following output:

The number is 1278.93

120

8/19/2019

61

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Printing Formatted Floating-

Point Values
You can specify both the field width and the number

of decimal places together, as shown here:

double grossPay = 874.12;

System.out.printf("Your pay is %8.2f\n", grossPay);

The output of the code is:

Your pay is 874.12

12345678

12

121

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Printing Formatted Floating-

Point Values
You can also use commas to group digits in a
number. To do this, place a comma after the %

symbol in the format specifier. Here is an example:

double grossPay = 1253874.12;

System.out.printf("Your pay is %,.2f\n", grossPay);

This code will produce the following output:

Your pay is 1,253,874.12

122

8/19/2019

62

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Printing Formatted String

Values
If you wish to print a string argument, use the %s

format specifier. Here is an example:

String name = "Ringo";

System.out.printf("Your name is %s\n", name);

This code produces the following output:

Your name is Ringo

123

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Printing Formatted String

Values
You can also use a field width when printing strings. For

example, look at the following code:

String name1 = "George", name2 = "Franklin";

String name3 = "Jay", name4 = "Ozzy";

String name5 = "Carmine", name6 = "Dee";

System.out.printf("%10s %10s\n", name1, name2);

System.out.printf("%10s %10s\n", name3, name4);

System.out.printf("%10s %10s\n", name5, name6);

This code displays the values of the variables in a table with

three rows and two columns. Each column has a width of ten

spaces. Here is the output of the code:

George Franklin

Jay Ozzy

Carmine Dee
124

8/19/2019

63

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The String.format Method

• The String.format method works

exactly like the System.out.printf

method, except that it does not display

the formatted string on the screen.

• Instead, it returns a reference to the

formatted string.

• You can assign the reference to a

variable, and then use it later.

125

PayrollDialogFormatted.java

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The String.format Method

• The general format of the method is:

String.format(FormatString,ArgumentList);

FormatString is

a string that

contains text and/or

special formatting

specifiers.

ArgumentList is

optional. It is a list of

additional arguments that

will be formatted according

to the format specifiers

listed in the format string.

126

8/19/2019

64

Copyright © 2018 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The String.format Method

• See examples:

• CurrencyFormat2.java

• CurrencyFormat3.java

127

